
Python on CoreOS
Dan Callahan — @callahad

This is not a talk about Docker
There is one of those tomorrow

This is a talk about servers
And what containerization changes

Linux distribution designed for containers

Preview best practices from the future

What’s your ideal platform?

1. Stays Updated

2. Won’t Break Apps

3. Survives Outages

We need something declarative

“Always keep two of these running,
but not on the same machine.”

We need new technology
1. System Updates
2. Application Isolation
3. Clustering
4. Task Distribution

Technology in CoreOS
1. FastPatch (Updates)
2. Docker / rkt (Containers)
3. Etcd (Consensus)
4. Fleet / Kubernetes (Scheduling)

All Free / Open Source Software

System Updates
(FastPatch)

Staying up-to-date is
key to good security

Browser-like Update Channels
Alpha → Beta → Stable

Opportunistically downloaded

Applied on next start

Whole-system Updates

My server is rebooting on its own,
how do I keep my app online?

Both my servers reboot at the same time,
how do I keep my app online?

Consensus
(etcd)

etcd
Key-value store

Centralized place to store cluster metadata

locksmith
Must acquire a lock from etcd before rebooting

Release lock after successful boot

Demo

My etcd server is rebooting on its own,
how do I keep my app online?

Etcd is Reusable
Google Kubernetes

Pivotal CloudFoundry

Mailgun Vulcand

Containerization
(Docker / rkt)

CoreOS is Minimal
140 MB compressed

No Python, Perl, Ruby, or JavaScript

No package manager

No compiler

How do you run anything?

Containers
CoreOS includes Docker and rkt

Demo

Scheduling
(Fleet / Kubernetes)

Cluster-level init

“Always keep two of these running,
but not on the same machine.”

Schedulers
CoreOS includes Fleet, supports Kubernetes

Both independent components

Both built on etcd

Fleet
Clustered interface for systemd

Systemd Unit Files
[Unit]
Description=My App
After=docker.service
Requires=docker.service

[Service]
ExecStartPre=-/usr/bin/docker kill my-app-%i
ExecStartPre=-/usr/bin/docker rm my-app-%i
ExecStart=/usr/bin/docker run -rm --name my-app-%i -p 80:8080 callahad/my-app
ExecStop=/usr/bin/docker stop my-app-%i

[X-Fleet]
Conflicts=my-app@*.service

X-Fleet attributes
Conflicts
MachineOf
MachineID
MachineMetadata
Global

Demo

Design Considerations
Minimize state

Build “Twelve-Factor Apps”

What about Databases?
Load balancers?

We did it!

We built a platform that is
self-updating, self-organizing, and self-healing.

We used
1. An OS with automatic, atomic, whole-system updates.
2. Portable, isolated containers for our applications.
3. Multiple servers in a coordinated cluster.
4. A scheduler to distribute jobs across machines.

Now it’s your turn!

Many supported platforms
Local VMs (Vagrant)
Azure, EC2, GCE, RackSpace
DigitalOcean

$40 credit on DigitalOcean:
“SAMMYLOVESPYCON”

Questions?
dcallahan@mozilla.com

@callahad

github.com/callahad/pycon2015-coreos

“SAMMYLOVESPYCON”

